1.1.1 自然数と素数(P6)より、有名なエラトステネスの篩と、 Wikipediaの 素数の項目 に載っていたウラムの螺旋を出力するコードです。 画像の作成には Vecto を利用しました。
(defun eratosthenes-sieve (n) "Return a sequence which indicates whether index is the prime number or not." ;; `n' is greater than or equal to 2 (check-type n (integer 2 *)) (let ((seq (make-array (1+ n) :initial-element t))) (setf (svref seq 0) nil) ; 0 is not a prime number. (setf (svref seq 1) nil) ; 1 is not a prime number. ;; The outer loop can stop at the square root of `n'. (loop :for i :from 2 :to (floor (sqrt n)) :when (svref seq i) :do ;; The inner loop can start at the square of `i'. ;; (Multiples of `i' which are less than the square of `i' are already set to `nil'.) (loop :for j :from (* i 2) :to n :by i :do (setf (svref seq j) nil))) seq)) (ql:quickload "vecto") (defun draw-uram-spiral (edge-length output-file-name &key (pixel 2)) (assert (<= 1 edge-length)) (let* ((limit (expt edge-length 2)) (primes (eratosthenes-sieve (expt edge-length 2))) (picture-edge-length (* pixel edge-length))) (vecto:with-canvas (:width picture-edge-length :height picture-edge-length) (vecto:set-rgb-fill 1.0 1.0 1.0) (vecto:rectangle 0.0 0.0 picture-edge-length picture-edge-length) (vecto:fill-path) (vecto:set-rgb-fill 0.0 0.0 1.0) (let ((idx 2) (step 0) (x (floor edge-length 2)) (y (floor edge-length 2))) (loop :while (<= idx limit) :do (dotimes (_ (1+ (floor step 2))) (when (<= idx limit) (case (mod step 4) (0 (incf x)) (1 (decf y)) (2 (decf x)) (3 (incf y))) (when (svref primes idx) (vecto:rectangle (* x pixel) (* y pixel) pixel pixel) (vecto:fill-path)) (incf idx))) (incf step))) (vecto:save-png output-file-name))))
> (draw-uram-spiral 100 "uram.png")
0 件のコメント:
コメントを投稿